A new ventilator for monitoring lung mechanics in small animals.

نویسندگان

  • G A Volgyesi
  • L N Tremblay
  • P Webster
  • N Zamel
  • A S Slutsky
چکیده

Researchers investigating the genetic component of various disease states rely increasingly on murine models. We have developed a ventilator to simplify respiratory research in small animals down to murine size. The new ventilator provides constant-flow inflation and tidal volume delivery independent of respiratory parameter changes. The inclusion of end-inspiratory and end-expiratory pauses simplifies the measurement of airway resistance and compliance and allows the detection of dynamic hyperinflation (auto-positive end-expiratory pressure). After bench testing, we performed intravenous methacholine challenge on two strains of mice (A/J and C57bl/bj) known to differ in their responses by using the new ventilator. Dynamic hyperinflation and a decrease in compliance developed during methacholine challenge whenever respiratory rates of 60-120 breaths/min were employed. In contrast, if dynamic hyperinflation was prevented by lengthening expiratory time, (respiratory rate = 20 breaths/min), static compliance remained constant. More importantly, the coefficient of variation of the results decreased when lung volume shifts were prevented. In conclusion, airway challenge studies have greater precision when dynamic hyperinflation is prevented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Small Animal Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and contr...

متن کامل

Functional Residual Capacity Development of new monitoring techniques for critically ill patients

Functional residual capacity (FRC) and end-expiratory lung volume (EELV) are important parameters for respiratory monitoring in critically ill adult and paediatric patients. Until now we have lacked clinically useful methods to measure these lung volumes. In this thesis two methods for bedside measurements of FRC in mechanically ventilated patients have been developed and evaluated. The first m...

متن کامل

A 2 Parameter Model of Lung Mechanics to Predict Volume Response and Optimize Ventilator Therapy in Ards

INTRODUCTION A majority of patients admitted to the Intensive Care Unit (ICU) require some form of respiratory support. In the case of Acute Respiratory Distress Syndrome (ARDS), the patient often requires full intervention from a mechanical ventilator. ARDS is also associated with mortality rates as high as 70%. Despite many recent studies on ventilator treatment of the disease, there are no w...

متن کامل

Intravital microscopy of subpleural alveoli via transthoracic endoscopy.

Transfer of too high mechanical energy from the ventilator to the lung's alveolar tissue is the main cause for ventilator-induced lung injury (VILI). To investigate the effects of cyclic energy transfer to the alveoli, we introduce a new method of transthoracic endoscopy that provides morphological as well as functional information about alveolar geometry and mechanics. We evaluate the new endo...

متن کامل

Transpulmonary pressure monitoring during mechanical ventilation: a bench-to-bedside review.

Different ventilation strategies have been suggested in the past in patients with acute respiratory distress syndrome (ARDS). Airway pressure monitoring alone is inadequate to assure optimal ventilatory support in ARDS patients. The assessment of transpulmonary pressure (PTP) can help clinicians to tailor mechanical ventilation to the individual patient needs. Transpulmonary pressure monitoring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 89 2  شماره 

صفحات  -

تاریخ انتشار 2000